Embodied models of delayed neural responses: Spatiotemporal categorization and predictive motor control in brain based devices
نویسندگان
چکیده
In order to respond appropriately to environmental stimuli, organisms must integrate over time spatiotemporal signals that reflect object motion and self-movement. One possible mechanism to achieve this spatiotemporal transformation is to delay or lag neural responses. This paper reviews our recent modeling work testing the sufficiency of delayed responses in the nervous system in two different behavioral tasks: (1) Categorizing spatiotemporal tactile cues with thalamic "lag" cells and downstream coincidence detectors, and (2) Predictive motor control was achieved by the cerebellum through a delayed eligibility trace rule at cerebellar synapses. Since the timing of these neural signals must closely match real-world dynamics, we tested these ideas using the brain based device (BBD) approach in which a simulated nervous system is embodied in a robotic device. In both tasks, biologically inspired neural simulations with delayed neural responses were critical for successful behavior by the device.
منابع مشابه
Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device.
In studying brain activity during the behavior of living animals, it is not possible simultaneously to analyze all levels of control from molecular events to motor responses. To provide insights into how levels of control interact, we have carried out synthetic neural modeling using a brain-based real-world device. We describe here the design and performance of such a device, designated Darwin ...
متن کاملImitation Learning and Response Facilitation in Embodied Agents
Imitation is supposedly a fundamental mechanism for humans to learn new actions and to gain knowledge about another’s intentions. The basis of this behavior seems to be a direct influencing of the motor system by the perceptual system, affording fast, selective enhancement of a motor response already in the repertoire (response facilitation) as well as learning and delayed reproduction of new a...
متن کاملSelf-Adaptive Recurrent Neural Networks for Robust Spatiotemporal Processing: from Animals to Robots
The ability to quantify temporal information on the scale of hundreds of milliseconds is critical towards the processing of complex sensory and motor patterns. However, the nature of neural mechanisms for temporal information processing (at this scale) in the brain still remains largely unknown. Furthermore, given that biological organisms are situated in a dynamic environment, the processing o...
متن کاملThe implications of embodiment for behavior and cognition: animal and robotic case studies
In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. ‘intelligence requires a body’, the concept has deeper and more important implicati...
متن کاملGeneration of motor neurons from human amygdala-derived neural stem-like cells
Objective(s): Among several cell sources, adult human neural stem/progenitor cells (hNS/PCs) have been considered outstanding cells for performing mechanistic studies in in vitro and in vivo models of neurological disorders as well as for potential utility in cell-based therapeutic approaches. Previous studies addressed the isolation and culture of hNS/PCs from human neocortical and hippocampal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2008